
Reprinted from Joua~... aI NA_1I<"A. I'sYntOLOOY
All Ri... _ by Academic New Vorl< and London

Vol.)). No. J. ScpI.."'''' 1989
l'riltlrJ", ",.'.,....

A Trichotomy: Interactions of Factors Prolonging Sequential
and Concurrent Mental Processes in

Stochastic Discrete Mental (PERT) Networks

RICHARD SCHWEICKERT AND JAMES T. TOWNSEND
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Suppose the mental processes required for performing a task are partially ordered. so that
some pairs of processes are sequential and some are concurrent. Then they <:an be represented
in a directed acyclic network. a PERT network. Suppose the duration or each proc:ess is a
nonneptive random variable. Suppose two experimental factors are available. each selectively
prolonpns a dill'erent proc:ess by adding a nonnegative random variable 10 ils duration.
Sternberg (\969) pointed out that if all the processes are in series. the faelors will have

additive effeCtson melion time, Here we show that if the faelors affect concurrent proc:csses,
the facton will have subadditive effCClS.Subadditive effects are also possible if the prolonged
processes are sequential, but in a Wheatstone bridge. If the PERT network has no subnetwork

homeomorphic 10 a Wheatstone bridge. then ineractions belween factors prolonpng sequen.
tial processes will be nonnegative. and in praclice will often be positive. The results are
illustrated. in a detailed analysis of a particular network. the Embellished Wheatstone
Bridge. 0 1919Academic In<.

A human performing an information processing task is carrying out a multitude
of mental ~rocesses which are organized somehow. There are many theories about
the details. One dichotomy of theoretical interest is whether the processes are
sequential or concurrent; another is whether a process must be completed before its
successors can start; another is whether the output of a process is a discrete entity,
such as a number or symbol. or a continuous quantity, such as a strength. Theories
are formed by taking a choice on some of these issues. allowing both options on
other issues, and being silent about others.

This paper develops further the theory'.of mental processes in a special arrange-
ment, a directed acyclic network (e.g., Fig. I). This arrangement allows for both
sequential and concurrent processes, assumes that a process must be completely
finished 6efore its successors can start, and makes no assumption about the nature
of the output of a process. The preceeding paper (Townsend & Schweickert, 1989)
has more details.. '

Special thanks are due to Donald L. Fisher for providing the compulational examples presented here,
and we thank Dirk Vorberg and Hans Colonious for stimulating discussions. Comments of the reviewers
have been very helpful. This work was supported by National Institute of Mental Health Grant
I ROI MH 38675-01 to the lint author and NSF Granl 9319377 to the second aUlhor.
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As cognitive models, directed acyclic networks are of an intermediate level of
complexity.They are more general than the models considered by Donders (1868)
and Sternberg (1969), in which all the processes are in series. They differ from
parallel distributed processing models (Hinton & Anderson. 1981:McClelland &
Rumelhart. 1986:Rumelhart & McClelland. 1986)in whichassumptionsare made
about the "microstructurc" of processing. Bccause PERT nctworks alIow a
moderately complicated system to be representcd without cxcessive attention
to detail, they are the major class of models considered in the mathematical
theory of scheduling(Coffman, 1976).They arc one of the standard ways to model'
systems of jobs, such as those encountercd by the operating systcmof a computer
(Coffman & Denning, 1973)or a manager in a factory.

Evidencethat mental processesare arranged in PERT networks in certain tasks
is discussedin Schweickert(1978, 1980,1983a)for cxperimentson the Stroop effect,
sentence verification, and the psychological refractory period. carried out by
variousinvestigatorsand by Schweickert.Themajorobjectionto PERTnetworks
as models for human information processing is the requirement, said to be
implausible, that a processcannot start before all its immediatepredecessorshave
finished.Miller (1988)points out that there is, as yet, no compellingevidencerejec-
ting this assumption as a basis for functioning.The assumption is veryplausiblefor
tasks requiring symbol manipulation. For example. in mental arithmetic. it is quite
likely that the process of adding the units column is completed before the process
of adding the 10'scolumn is started.

The additivefactor method.Sternberg's (1969)additivefactor methodassumes,as
does Donders' (1868)method, that all the processesare in series.Supposethere are
two experimental factors each of which prolongs a differentprocess in the series.
For example, suppose making the stimulus dimmer prolongs a perceptualprocess
and increasing the number of alternatives prolongs a decision process.Then the
increase in reaction time produced by prolongingboth processeswillbe the sum of
the effectsof prolonging the processes individually.

Sternberg (1969) also said that if the two factors interact, it is likely that they
both affect the same process in the series.Taylor (1976)expanded on this theme.
Here, we argue that if the two factors interact, it may be that the assumption that
all the processes are in series is violated. I We further suggest that it is not merely
the occurrence of an interaction that is important, but whether the interaction is
positive or negative. By a positive interaction, or superadditivity, we mean that the
combined effect of the factors is larger than the sum of their individual effects; a
negative interaction, or subadditivity, is defined analogously. The preceding paper
compares our assumptions with earlier approaches in more completeness.

o

e

1'1(;. I. An Embellished Wheatstone Bridge. Each ;arc represenls a menial process. The mean

hascline duration or each process is indicatcd hy a number on thc corresl'onding arc.

An example. When not all the processes are in series, interactions between factors
can come and go, depending on seemingly unrelated aspects of the experimental
situation. Suppose two laboratories investigate the effects of two experimental fac-
tors in the same task. The experiments are done in the same way, except that in the
first laboratory trials began without a warning signal, while in the second a warning
signal was used. The hypothetical data from laboratory I. in the upper panel of
Table I, have a negative interaction and the data from laboratory 2, in the lower
panel, have a positive interaction.

Many,post hoc explanations could be offered for these results. However, a unified
explanation suffices. They were generated with the arrangement of processes in
Fig. I. The processes have independent exponential distributions, with means as
indicatedin the figure.FactorI changesthe meandurationof process:cfrom 1/20 I. II
to I, factor 2 does the same for process }'.The warning signal is assumed to shorten
process c, which might be concerned with response preparation. The PERT
network in Fig. I is called an Embellished Wheatstone Bridge (EWB), The values
in Table I, and in the other examples in this paper, were calculated by Donald L.

TABLEI

Hypothetical Response Time Data
rrom Two laboratories

level or raetor 2

levelor
raetorI 2

2

Laboratory One"
1.868
1457

Laboratory Two'
1.528
1.890

2.457
3.008

1 Another possibility is that the processes are indeed in series, but a process begins execution berore
its successor is finished. This possibility will not be dealt with here. McOelland (1979), Townsend and
Ashby (1983), pp. 401-412), Ashby (1982). and Schweicl1ert (in press) have made progress on theoreti-
cally analyzing such systems and Miller (l982a. 1982b) and Meyer, Yantis. Osman. and Smith (1985)
have suggested tests or certain versions or these.

I
2

2.254
2.689

.Negative interaction: process r has mean I

· Positive interaction: process r has mean li20.
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Fisher (personal communication. August
Goldstein (1983). Further development
Goldstein (1985) and Vorberg ( 1988).

We now proceed to our results on interactions. Ultimately we will show that the
qualitative trichotomy of superadditivity. additivity. and subadditivity is sufficient
to assess much that is of interest about the mental network underlying a task.

1986)using the algorithm of Fisher and
of algorithms is in Fisher. Saisi. and

assumption that a factor increments the duration of the processit prolongs is equiv-
alent to the assumption that the factor orders the distributions of the process it
prolongs. Suppose the random variable corresponding to every process duration
except that of x is unchanged when the levelof factor I is changed.Suppose when
factor 2 is at level2. the duration of process y is D(y) + V. where D(y) is as
definedbefore and V is a nonnegative random variable.TheelTectof factor 2 is to
increment the duration ofy. Suppose the random variable corresponding to the
duration of every process except y is unchanged when the level of factor 2 is
changed.

Let the random variable Tij be the time to complete the task when factor I is at
level i and factor2 is at level}.A particular value of Tij is denoted l,p Given a set
of realnumbervaluesd(or). s(xr). s(yr). u. and v (with sexy') includedifx precedes
y). the quantities III' 1/2. t21,and 122are produced.2We are interestedin the expec-
ted value of the exp~ession A = T22 - T21 - TI2 + T..; E[A] =E[T22J- E[T21J-
E[TI2] + E[TII].

When x and yare concurrent. the slacksS(xr) and S(yr) are linear combinations
of the durationsD(or). D(ox'). D(x). D(x"r). D(oy'). D(y). and D(y"r). These
durations and the nonnegative random variables U and V have a joint density,
g(d(or). d()'''r), u. v). It follows that the slacks S(xr). S(yr). and the random
variables U. V. and TII =D(or)have an inducedjoint densityf(s(xr), s(yr), u, v, 1..).
When x and yare sequential, with. say. x preceding y. there is an analogous density
for the random variables S(x)"), S(xr). Sly;). U. V. and TII'

TERMINOI.OGY

For the reader's convenience. a brief summary of the notation and concepts of
stochastic discrete mental networks is given here. The terms are fully defined in the
preceding paper (Townsend & Schweickert. 1989); see also Schweickert (1978.
1982).

Suppose each process x which must be executed to perform a task is represented
by an arc from starting vertexx' to finishingvertexx" in a directed.acyclicnetwork
with source 0 and sink r. A process begins execution when and only when all its
adjacent preceding processes are finished. The duration of process x is a non-
negative random variable D(x). with finite mean. A value taken on by D(x) is
denoted d(x).

Suppose the duration D(x) of each process x has taken on a value d(x). In
other words, suppose each arc has associated with it some nonnegative real
number. For a given assignmentof nonnegativereal numbers to the arcs. the
dural ion of a path is the sum of the durations of all the processes on it. We'let
d(a. b) denote the duration of the longest path from vertex a to vertex h. Suppose
process y follows process x on a path. The .flack from process x to process y
is s(xy') = d(o. y')-d(o.x')-d(x)-d(x". y'). The tOlUl.flack for process x is
s(xr) = d(o. r) - d(o. x') - d(x) - d(x". r). Given values of .I'(xr). .r(yr) and sexy').
we let s(yx") = s(yr) - s(xr) + s(xy').

When the durations of the processesare random variables.then so are the path
durations and the slacks. Let the random duration of the longest path from vertex
a to vertexb bedenotedD(a.h). Therandomvariablesfor thesla~ksS(xr). Sexy')
S(yr). and S(yx") are defined by substituting in the above' equations the
appropriate values D(a. h) in place of d(a, hi for every pair of vertices (a. h).

Prolonging Processes. Supposex and yare two processesin a directed.acyclic
network. If there is a path from the finishingvertex of x to the starting vertex of
y. or vice versa. then x and yare .fequenrial.Otherwise they are concurrent. Suppose
factor I alTectsprocess x and factor 2 alTectsprocess y. Let D(:) denote the
durationofprocess: whenboth factorsare at theirlowestlevels.In particular,the
duration of x is D(x) and that of y is D(y) when.both factors are at their lowest
levels.Suppose when factor I is at level2. the duration or processx is D(x) + U,
where U is a nonnegative random variable. Factor I is said to increment the
duration of x. The preceding paper (Townsend & Schweickert. 1989) shows that the

%One or the reviewers argues that the random variable If = Tn - TI2 - TZI + TII is not well defined,

~use the T. are defined on dilTerent sample spaces. His position is. MIam not saying that the theorem
is incorrect but only that the proor is not watenight: As we understand his objection. it is that in a typi-
cal reaction time experiment it is not possible to obtain a set or observations ('II. 'ZI' I u. '21) as defined
here. becauseon any given trial the subject is observed in exactly one or the experimental conditions,
not all rour or them. This objection would have implications about the sample estimator or the popula-
tion value E[ Tn - Tz\ - TI2 + TII J. Since our theorems concern the population value. the comment. as
we understand it. is not directly relevant to the theorems.

There seem to be two slightly dilTerent ways to respond in more delail to this query. (I) Let Til' Til'

T;:. Ti%denote the times to complete the task in the rour conditions in the event that all are observed
on the same occasion. Let T~ denote the time to complele the lask in condition (i. j) when the task com-
pletion time ror that condition only is observed on an occasion.as in a typicalreaction time experiment.
Then the investigator will never know whether E[ T;,J = E[ T:J. since the two ways to make the obser-
vations are mutually exclusive. The preceding equation must be assumed in order to apply our results
to a typical reaction time experiment. but we think most investigators will find the assumption
innocuous.even rrom this viewpoint.(2) From a slightlydifferentperspective,it is really only necessary
to consider If as an expressionto be integrated. not necessarilya random variable.The regrouping or
terms in the proors or the theorems is justified by the standard tenets or the integral calculus-once the
condition or Definition10rrom the precedingpaper is in place. Funhermore. in everycase. an alternate,
somelimemore tedious. proor can be carried out even without the regrouping.Thus. assuming Defini-
tion 10 or the first paper. the integrand or E(T.,I U.j= I. 21 in the first part or the proor actually rerer
to the same (respectively speaking) variables '... u.r.s(xr). and so on. It can then be seen that E(/II)
will cancel out and that E[Max{[u-s(xr)]". [I' -s(yr)J'}] must be less than £{ (u-s(xr)]"} +
£1(1' -slyr)].}. thus leading to the negative contrast.
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The major assumptions underlying the theorems on stochastic discrete mental
processes can be stated informally as follows.Proccssearc arranged in a PERT
network. One experimental factor prolongs a process x in the network. and
another prolongs a processy. Each factor prolongs the processassociated with it
by incrementing the duration of the process. leaving the durations of the other
processes unchanged.When the levelof a factor is changed. there is no change in
the graph underlying the PERT network. A joint density exists for the random
variables D(or), S(xr), S(yr), U, and V Iwith Slxy'l included if .Yprecedes.1').
Certain marginal densitiesare used in the proofs; theseare assumedto exist and to
be well defined (marginal selectivity;see precedingpaperI.

Otherwise. there are no assumptions about the form of the distributions. or
about the independenceof the random variables.In particular, even ifeach subject
has a different joint distribution for the random variables. the theorems would
apply to the expected values of the reaction times. where the expectation is with
respect to the mixture distribution produced by all the subjects.

TABLE2

EffC\.1sof Factors SeICl:tively Prolonging
Concurrent Processesx and... in Fig. 2 by Decreasing

Their Rate Parametersfrom 20 to I.

The Number in Each Cell is the Mean Repun5CTime
in Arhitr..ry Units.

Level of factor 2

Level of
factor I 2

I
2

2.139
3.054

3.054
1551 I

j

II
!
j

THE QUALITATIVE TRICHOTOMV ANI> ITS IMPLICATIONS

is assumedto decreaseits rate parameter for y from 20 to 1.The resulting reaction
times lead to a negativeinteractionof -.418.

In the second example. in Table 3. the factor prolongingx is assumed to insert
an additional independent exponentially distributed process in series with the
original process x. so the new process x has a generalized gamma distribution
(McGill& Gibbon. 1965).The insertedprocesshas a rate parameter of 1.Likewise.
the factor prolonging y is assumed to insert a new independent exponentially
distributed processin serieswithy. The rate parameter of the new process is I. The
resulting reaction times lead to a negative interaction of - .463.

Townsend and Ashby (1983: see also Townsend. 1984) proved that a large
number of parallel models cannot predict additivity and that the class of indepen-
dent parallelmodels must predictsubadditivity.The followingtheorem generalizes
the subadditivityclassificationto an even larger set of models,where independence
is not required. It states that if processesx and .I'are concurrent and a restricted
range of values for the prolongationsis not used. then the interaction. as given by
E[A]. is negative.

The proof is a variation on that in Townsend and Schweickert (1985). It is given
in some detail; later proofs will be briefer. Let R = {(s(xr). s(yr), U,t') } be the set

I

We begin with networks in which processes x and yare concurrent. and then
discuss the more complicated case where they arc sequential.

Concurrent Proces-res

An example of a network in whichx and yare concurrent is in Fig.2. Examples
of the behavior of factors prolongingx and yare in Tables2 and 3. In theseexam-
ples, it is assumed that the processduration have exponentialdistributionsand are
pairwise independent. The mean duration for each process (the reciprocal of the
rate) is given in the figure.Evidencethat some mental processeshave exponential
distributions is given in Ashby (1982), Ashby and Townsend (1980). Kohfeld
(1969). and Kohfeld. Santee, and Wallace (l981a, 1981b).Ratcliff(1988) argues
that nonexponential processes may sometimes statistically approximate certain
predictions by exponential processes.

In the first example. in Table 2. the factor prolongingx is assumedto do so by
decreasingthe rate parameterof x from20to J. Likewise.the factorprolongingy TABLE 3

Effects of Factors Selectively Prolonging
Concurrent Processes x and .r as in Fig. 2 by

Concatenating a Process with Mean I
in Series with Each of Them

Level of factor 2

FIG. 2. When x and... are concurrent. factors selectively prolonging them will interact. The number
on each arc is the mean of the exponential distribution assumedfor the baseline in the calculations
reported in the text.

I
20-

o.c x1k

---. 20
Levelof
factorI I 2

1 2.139 3.102
2 3.102 3.602
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[r+]{:~
if ; ~O

if r>O.

= i
'
i ' r r r (/1I+max{[u-.r(xr))+.[I'-.r(yr)]+}(I (I (I (I (I

-/II-[u-s(xr))+

-III - [v - ,r(yr)) + + III )f(.r(xr). s(.I'r). u. 1'.t..)

x dr(xr) dr(yr) du dv dtll

=i
'"

i i'" r (max{ [u - .r(xr))I , [v - .r(yr))+ }(I (I (I (I

of values taken by the random vector (S(xr). SU'r). u. V). Let R.\,c R be the
region where the prolongations are larger than the slacks, that is

RN = ( (s(xr), s(yl'), u, 1') 1/1> s(xr) and I' > s(yr)}.

For a real number r. let

THEOREMI (Townsend & Schweickert, 1985). rr proCl'.m'.r x IlIItI .I' ar('
concurr('nt. Ih('n E[A] ~ O. if Ih(' prohahilily thlll (r(xr). s(yr). /I. I') tak('s 01//'al,u'.r
in RN i.r po.ritive, then E[A] < O.

Proof. In Schweickert (t 978) it is shown that for given values
(s(xr), s(yr), u. v), if x and yare concurrent,

- [u -.r(xr)] + - [v- s(yr))' )/m4(.r(xr)..\'(,I'r),II,v)

x ds(xr) ds(yr) du dv

= IIII OfI2J4(S(XY). .r(yr). u, v) d.r(xr) dr(yr) du dv
R- RN

121= III + [u - s(xr] I

112 = I II + [I' - .r(yr )I'

t22= I.. + max{[/1- s(xr] +, [I' - s( yr)) + }.

+ Ifff(max{u - s(xr), v- s(yr)} - (II-s(xr) - (v - s(yr))
RN

XfI234(s(xr), s(yr), u, v) ds(xr) ds(yr) du dv.

The result follows immediately. Q.E.D.Then

a=I22-112-121+1..

+ iXt.. fsU II) dIllo

Sequenlial processfs

The story would be simpler if factors prolonging sequential processes always had
nonnegative interactions, but they do not. If the network is a Bare Wheatstone
Bridge (BWB), as in Fig. 3, the interactions between factors prolonging :c and y can
be negative. If the baseline durations of x and yare large, the interaction will
approach additivity, but it can never be positive.

Two graphs are said to be homeomorphic if one can be transformed to the other
by repeated application of the following two procedures: (a) an arc is replaced by
two adjacent arcs in series and (b) two adjacent arcs in series are replaced by a
single arc. Negative interactions for factors prolonging sequential processes can
only occur if the task network has a subnetwork homeomorphic to the Bare
Wheatstone Bridge (Schweickert. 1978).

The Bare Wheatstone Bridge is important for another reason. A directed acyclic
graph (DAG) is series-parallel if it can be constructed recursively as follows. (I) A
single directed arc between two vertices is a series-parallel DAG. (2) (Serial com-
position) If a directed arc is inserted as an adjacent predecessor to the starting
vertex of a series-parallel DAG, or inserted as an adjacent successor to the ter-
minating vertex of a series-parallel DAG, the resulting DAG is series-parallel.
(3) (Parallel composition) If a directed arc is inserted with its starting vertex at the
starting vertex of a DAG and with its terminal vertex at the terminal vertex of a
DAG, the resulting DAG is series-parallel.

I

I
I

'i

I

= maxI[u- s(xr)]+, [I: - s(yr)) + }- [u- s(xr)] + - [10-s()')) +.

Clearly, a = 0 when and only when /I~ s(xr) or I:~ .r(yr). Otherwise a < O.
Let the joint density of s(xr).s(yr),II, 1'.III be/(s(xr).s(yr), u, V./I.)' Let the

joint density of s(xr). s(yr), u. I' be fI2.'4(s(xr). s(yr), u. v); let the joint density
of s(xr),u,t" be flJ5(s(xr).II,/II); let the joint density of s(yr),v,11I be
f24S(S(yr), v, III); and let the density of III be fs(l II)' Then

E[A] = E[T22] - [E[ T21] - E[ T12] + E[T..]

=f
x

f.

7.

f.

7.

f. 7. r (I II + max -[[11- s(xr)] + , [v - s(yr) + })00000

xf(s(xr), s(yr), II,r, (..I ds(xr) dstrr) dudlodt II

- foX(' r (I..+ [/I-s(xr)] + )flJs(.r(xr), u, III) ds(xr) du dill

_I
x

Ix r (111+ [t'-s(yrl]+ )fw(s(yr), II, tll)d(yr) dv dIll(100
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TAIJLE 4

Effects or Facllm Selectively Prnlonging x :tnd ,I'
in a Bare Whc:lIstunc Bridgc :IS in Fig. .1hy

Decreasing Thcir R:llc rrnm I'aramelcrs 211III J.
o

Lcvclor
raclnrI

J.55~ ~.~61
~.~61 ~.KK9

1'1(;. J. Processes.\' and ,I' arc on opposite sides or a Whealslone Bridge. For Ihe calculations
rcporled in the leX!, each process is auumed to have an exponenlial dislribulion whose mean is given
hy the number associated with each arc. I

II

An important result is that a directed acyclicgraph is series-parallel if and only
if it does not contain a subgraph homeomorphic to the Bare Wheatstone Bridge
(Dodin, 1985;Kaerkes & Mohring, 1978:Valdes.Tarjan. & Lawler 1979).

Tables 4 and 5 show the results of prolonging processesin the Bare Wheatstone
Bridge illustrated in Fig.3. The number on each arc gives the mean duration of
each process. The processesare assumed to have pairwiseindependent exponential
distributions.

In Table 4, each of processesx and y is prolonged by having its rate parameter
changed from 20 to I. The interaction is -.093. In Table 5. processx is prolonged
by having an independent exponentiallydistributed process inserted in series with
x. The new process has rate parameter I, and is independentof every other process
in the network. Process .I'is prolonged in the same way. (The processesinserted to
prolong x and yare independentof each other as well.)The interaction is -.102.

The next theorem shows that the interaction will tend to be negative if the
network is a Bare Wheatstone Bridge with x and y as in Fig.3.

Let the joint density of (S(xy'), S(xr). S(yr). U. V) be f(s(x)" )..f(xr)..f(yr),u.v).
Let R = { (s(xy'), s(xr), s(yr). u, t') f be the space of values taken on by the random
vector (s(xy'). s(xr). s(yr). u, v). The space R can be divided into 18 regions as in
Tahle 6, from Schweickert(1978, 1982).

For the Bare Wheatstone bridge, regardlessof the distributions of the process

durations. the only regions possible are R. through Rv. since s(xr)-s(xy)::s;:;O
(Schweickert,1978, 1982). If the prolongations are big enough to have an effect.
a<O.

THEOREM2. Suppo.fe the task netWork is a Bare WhealS/one Bridge with x and
y on oppo.fite .fide.fof the bridge. as in Fig. 3. Then E[A] ~ O.If the pertinent random
variables S(xy'). S(xr). S(yr). U. V take on values in regions R5' R6. Ra. R9 with
nonzero probability. then E(A) < O.

Proof. We have

E[A] = fffffaf(s(xy'). s(xr), s(yr). u. v)
R

x dr(xy') ds(xr) ds(yr) du dv

fffff OJ(.f(XY').s(xr). s(yr). u. v)
R,v RjV R,v R.v R,

x ds(xy') dr(xr) dr(yr) du dv

+ fffff af(s(xy'). s(xr). s(yr). u. v)
R,v R.v R,v R.

TABLE 5
x ds(xy') ds(xr) df(yr) du dv

Effecls or Factors Seleclively Prolonging x and y
Arranged in a Bare Wheatslone Bridge as in Fig. 3 by

Concatenaling a Processwilh Mean I
in Serieswilh Each or Them.

~O

Level or raetor 2

since a < 0 in regions R5. R6' Ra. and R9' The second part of the theorem follows
immediately. Q.E.D.

We now consider the case in which x precedes y. but no subnetwork of the task
network is homeomorphic to a Wheatstone Bridge with x and y on opposite sides
of the bridge. In that case. the only regions of R possible are RIO through RI8
(Schweickert, 1978. 1982). The following theorem states that in that case, the inter-
actions are nonnegative.

Levelor
ractorI I 2

I 1.552 2.304
2 2.304 2.954
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In Townsend and Schweickert (1985) it was shown that in the special case of the
network consisting of x and y in series with an arc = concurrent with both x and
y. E[ A] > O. The following theorem considers the general case.

THEORF.M3. Suppo.reprt}('e.rsx precede.rproce.f.fy. and there i.rno subnetwork of
the ta.rk network homeomorphic to a Wheatstone bridge with x and y on opposite
.~id('.rof the bridge. Then E[A] ~ O.If every region of R po.rsibleunder the hypotheses
ha.r (I nonzero probability) then E[A] > O.

Prol!/: We have

E[A] =fffffaf(s(x}"). .r(xr). .f(yr). u. 0)
II

,
I

Xdr(x)") dr(xr) dr(yr) du dv

ffff q((.r(xy'). .r(xr). .r(yr). u. v)
R.. v R" v R'7v R.I

x ds(xy') dr(xr) dr(yr) du dv

~O

since a> 0 in regions R14. Ru. R.7. and RIB' The second part follows immediately.
Q.E.D.

COROLLARY.If E[A] <0. then either x and}' are concurrentor there is a sub-
networkof the task networkhomeomorphic'toa Wheatstonebridgewith :cand y on
oppositesidesof the bridge.

Proof. The conclusionfollowsimmediately. .
The followingtwo theorems provide information about the conditions under

whichadditivity and superadditivityarise.

I

Ii
I

I
I

THEOREM4. If E[A] > O. then there i.~a pathfrom tJto r not containingx ory.

Proof. Since E[A] > O. x and yare sequential. Without loss of generality,
assume :cprecedesy. Assume.contrary 10the conclusion. that every path from 0
to r contains x. Then for every set of values taken on by the path durations.
s(xr)=O. Then s(xr)-s(xy')~O. so E[A] ~O contrary to the hypothesis. Hence.
there is a path from 0 to r not containing :c.Likewise.there is a path from 0 to r
not containingy.

Supposeeverypath from0 to r not containingx containsy. and every path from
o to r not containing y contains .\'.Then either .\' or y is on the critical path, so

J From Table 6. it is apparent that a slighlly stronger resuh holds. If the random variables Sexy').
SI.tr). Slyr). U. V take on values in R.,. R.,. or RII with nonzero probability. or if
[II-s(yr) + u-s(xy')] + >0 with nonzero probability lin region R,.). then E[A] >0.
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sIx)") = d(o )- d(ox") - d(x) - d(x")"1

and there is no upper bound on the duration of x. there exist values of dlx) large
enough to make s(xy') =O. Suppose s(x )=O.

Supposethereexistsan arc: concurrentwithx and )'. withpositivecriticality
index. The total slack for: is .vl:,.) =d(or) - d( 0:'1 - dl:) - d(:" r). Since: has non-
zero criticality index. there exist values of d(:) large enough to make s(:,)=O. Since
: is on none of the three paths in the equation for s(x)"). the duration of s(:c}") is
not affected by the value of d(:). Suppose: is critical while s(:c)")=0.

Process x cannot be on a critical path with :. since x does not precede or
follow:. If there is only one critical path. x is not on it. so sIx,) > O.Suppose there
are more than one critical path. and x is on one of them. This path does not con-
tain =. and since there is no upper bound on the duration of z, a slightly larger
value for d(:) will make this path noncritical. Then s(x,.) > O.

Since .v(xr) > O. while s(x."') =O. region R 1M is a possible region, and has some
nonzero probability of occurring. If E[A] = O.the contributionsfromthe regions
Rs, Rb' RH. and Ry. where the interaction is negative. must exactly equal the
contributions from the regions RI4' R,s. RI7' and R18. where the interaction is
positive. Clearly this will not happen for all choicesof the joint densityf(s(:cy),
s(s,), s(}'r), u, v), hence it is not the case that E[A] =0. Then no processz exists
as described. Q.E.D.

classifiedas positive, negative, or zero, and various classesof networks would be
selected for further consideration, or eliminated. If it is known for every pair of
processeswhether the pair is sequentialor concurrent, then the set of all possible
digraphs can be constructed by using the transitive orientation algorithm; see
Golumbic (1980) or Schweickert(l983b) for details.

An investigator would not ordinarily have information about all pairs of pro-
cesses.but might,by somecombinationof empiricalknowledge,commonsense,
and previous. analysis of reaction times, be able to restrict his attention to a set of
candidate networks. To illustrate the use of the theorems in this paper, we suppose
the investigator has decided by some means that the relevant network is an
Embellished Wheatstone Bridge or a subnetwork of it. and consider how the results
of prolonging two processes, x and y. further restrict the possibilities.

The Embellished Wheatstone Bridge (EWB), see Fig. I, provides a prototype of
sorts for all three types of qualitative mean reaction time behavior. additivity,
supcradditivity, and subadditivity. It can do this because it contains the four
fundamental classes of paths: (I) paths containing both,\' and y: (2) paths contain-
ing ,\' and not y; (3) paths containing)' and not x; (4) paths containing neither x
nor Depending on which paths are dominant, in terms of tendencies toward long
processing times, the EWB can act like (a) the Bare Wheatstone Bridge IBWB) in
Fig. 3; (b) a network in which :cand)' are concurrent; (c) a network in which x and
... lie on a path but are concurrent with an additional path. and paths of type (2)
and (3) are absent; (d) a network in which :c and yare in series.

It is relatively obvious from the preceding sections that (a) and (b) produce sub-
additivity, (c) produces superadditivity, and (d) produces additivity. Slightly more
subtle is the other direction: What may we conclude from super-. sub-, or additivity
discovered in our data, when we are willing to confine ourselves to the EWB, or
subnetworks of an EWB? It turns out that quite strong conclusions may be drawn
within this class of systems.

,(xrl =0 or s(yr) =0. In either case. .1'lxrl-s(x)") ~O so E[A] ~O contrary to the
hypothesis.Hencethereexistsa pathfrom0 to r notcontainingx or Q.E.D.

The following terminology is needed for the next theorem. When the levels of the
ractors prolonging processes x and)' arc chosen. there is a corresponding density
((.I"(x)"). .I"(X,.). .1"1.",.). /I. 1'). If for all such choices E[ A] =O. we write E[A] = O.The
duration of a particular process: may be so small that it is never on a critical path.
The criticalit)' il/d(.x of a process: is the probability that: is on a critical path in
a sample of process durations. A process never on a critical path has criticality
index O.

THEOREM5. Suppose there i.I'lIa IIpper hOlilldIII/the 1'tI11I('the duratillll of a pro-
ce.v.v("{Inhave. Suppose' all po.vsih/ereKion.vin R IWI'ef/on:ero probability of occ'urring.
rf' E[ A] = 0, then there is no arc: concurrent lI"ithhoth ,\' and... and having QpositivI!
criticality illdex.

Pro!)!: Since E[A] is O. by Theorem I x and yare sequential. Without loss of
generality. assume x precedes .1'.Since for a given set of process durations

I,I

ApPLlCA TION OF THEOREMS TO THE EMBELLISHED WHEA TSTONEBRIDGE

I. If additivity is found for all levelsof u and v, then by Theorems I, 2, and
5 the bridge in the EWB is present (b in Figure I). the path containing neither x
nor y is absent (e) in Figure I), and it is not the case that both (' and a are present
(on the paths containing, respectively, x but not y and y but not x). Fig. 4 shows
three mental networks satisfying these conditions.

II. If superadditivity is found, then by Theorems I and 4, (a) x and yare con-
nected on some path (i.e., the bridge, b, is present) and (b) the path that contains
neither x nor y is present (e). The other paths, a and e, mayor may not be present.
A BWB is ruled out because it is incapable of producing superadditivity. Figure S
indicates the appearance of such networks. Observe that the EWB can (but need
not) produce such behavior and the simplest network evidencing this type of
behavior is simply serial in x, y with a concurrent path e.

III. If subadditivity is found. then by Theorems I and 2 and EWB could (but
need not) be responsible. The behavior of the network is dominated by either the

To use these results to analyze a task, the investigatorwould use experimental
factors to prolong processes individuallyand in pairs. The interactions would be
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(0)

(0 )

(b)
e

(c)

e

( b)

e

FIG. S. Networks producing supcradditivity.

(d)

additivityimpliesthe presenceof processe, as in the specialcase where x and yare I
serial in concurrence with e. Finally, any network in which there exists a path .,
connectingx and y (i.e.,b) can aporoach additivity asymptotically if the baseline
durations of x and y, D(x) and D(y), are relativelylong.

Incidentally,it is interesting that one of the present class of mental networks
cannot, as x and y (alone) are manipulated,act subadditivelyfor a while and then
alter to acting superadditivt:lyor viceversa.For instance,whencertain of the above
subadditivenetworks approach additivity asymptotically,they do not go through
an intermediatephase of superadditivity.This is one indication that our method is
based on a falsifiabletheory, albeit a quite general one. Strong empirical evidence
that such alternating super- and subadditive phases occurred throughout the
reasonablerange of x and y manipulationswould falsifythe entire class of PERT
networks.

Finally, it is possible to gain more identificationof a network by manipulating
other path durations. For example, in the event of superadditivityassociated with
EWB, one can learn if a and c are present because if they are prolonged, the
networkwill be pushedinto subadditivity.Similarremarks hold in the case of sub-
additivity.Ultimately,then, there is hope of almost complete identificationof the
underlyingmental network employingfactorial reaction time experiments within
our methodologyand withinthe generalclass of EWB's.The only real exception is
in certain cases such as x, y in serieswhere their order would not be determined
by our method.However,in many such cases.common sensemay dictate the order
(also seeSchweickert,1983b).

(c)

FIG. 4. If the task nctwork is known 10 he a subnctwork of the Emhellishcd Wheatstone Bridge. and

additivity is found for all levels of the factors prolonging x ,IOd .r. Ihen the network is one of the three
iIlustratcd here.

BWB or a subnetwork of he EWB in which x and .r are concurrent. Two
possibilities for the latter are shown in Fig.6b and 6c. Continued prolongation of
x and y will lead to asymptoticadditivity in case of an EWB or BWB but subad-
ditivity persists always if a network in which x and .r are concurrent is responsible
for the original subadditivity.

Thus, additivity suggests a network in which the various subprocesses can be
segregated into two subnetworks of activity.one containingx and the other y, that
are connected through a single vertex. The subnetwork can be identified as an "x"
subnetwork because its overall processing duration is selectively affected by the

experimental factor. The same can be said with regard to y in the second
subnetwork, so overall we see a sort of serial macro-systeminvolving separate
subsystems for x and .1'.

The full EWBcan, as we might expect,produ'ceeither super-or subadditivity but
not additivityexcept by a balancing act. The BWBcan only produce subadditivity.
Networks in which x and .r are concurrent can only produce subadditivity. Super-
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Epilogue. This paper presents two types of theorems. Constructing networks
from data requires theorems of the form: If property P holds for the interactions.
then property Q holds for the network. A complete set of such theorems would dic-
tate the set of all networks possible for a given set of data. The set of theorems in
this paper is. in this sense. incomplete. Some of the theorems presented are of the
form: If property Q holds for the network. then property P holds for the interac-
tions. These shed some light on the set of networks possible for a given set of data.
but may be of greater use as steps toward further theorems of the first type. In any
case. the applications to EWB's may be considered complete within that realm.
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