inted from JOURNAL OF MATHEMATICAL PSYcHOLOGY Vol 33, No. 3, i
A ;I:,tl Reserved by Academic Press, New York and London Prm":" xf:m

A Trichotomy: Interactions of Factors Prolonging Sequential
and Concurrent Mental Processes in
Stochastic Discrete Mental (PERT) Networks

RICHARD SCHWEICKERT AND JaMES T. TOWNSEND

Depariment of Psychological Sciences, Purdue University

Suppose the mental processes required for performing a task are partially ordered, so that
some pairs of processes are sequential and some are concurrent. Then they can be represented
in a directed acyclic network, a PERT network. Suppose the duration of each process is a
nonnegative random variable. Suppose two experimental factors are available, each sel ively
prolonging a diflerent process by adding a nonnegative random variable to its duration.
Sternberg (1969) pointed out that il all the processes are in series, the factors will have
additive effects on reaction time. Here we show that if the factors affect concurrent processes,
the factors will have subadditive effects. Subadditive effects are also possible if the prolonged
processes are sequential, but in a Wheatstone bridge. If the PERT network has no subnetwork
homeomorphic to a Wheatstone bridge, then ineractions between factors prolonging sequen-
tial proeesses will be nonnegative, and in practice will often be positive. The results are
illustrated in a detailed analysis of a particular network, the Embellished Wheatstone
Bridge. © 1989 Academic Press, Inc.

A human performing an information processing task is carrying out a multitude
of mental processes which are organized somehow. There are many theories about
the details. One dichotomy of theoretical interest is whether the processes are
sequential or concurrent; another is whether a process must be completed before its
successors can start; another is whether the output of a process is a discrete entity,
such as a number or symbol, or a continuous quantity, such as a strength. Theories
are formed by taking a choice on some of these issues, allowing both options on
other issues, and being silent about others.

This paper develops further the theory-of mental processes in a special arrange-
ment, a directed acyclic network (e.g., Fig. 1). This arrangement allows for both
sequential and concurrent processes, assumes that a process must be completely
finished before its successors can start, and makes no assumption about the nature
of the output of a process. The preceeding paper (Townsend & Schweickert, 1989)
has more details. .

Special thanks are due to Donald L. Fisher for providing the computational examples presented here,
and we thank Dirk Vorberg and Hans Colonious for stimulating discussions. Comments of the reviewers
have been very helpful. This work was supported by National Institute of Mental Health Grant
1 ROI MH 38675-01 to the first author and NSF Grant 9319377 to the second author.
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As cognitive models, directed acyclic networks are of an intermediate level of
complexity. They are more general than the models considered by Donders (1868)
and Sternberg (1969), in which all the processes are in series. They differ from
parallel distributed processing models (Hinton & Anderson, 1981; McClelland &
Rumelhart, 1986; Rumelhart & McClelland, 1986) in which assumptions are made
about the “microstructure” of processing. Becausc PERT networks allow a
moderately complicated system to be represented without excessive attention
to detail, they are the major class of models considered in the mathematical

theory of scheduling (Coffman, 1976). They are one of the standard ways to model

systems of jobs, such as those encountered by the operating system of a computer
(Coffman & Denning, 1973) or a manager in a factory.

Evidence that mental processes are arranged in PERT networks in certain tasks
is discussed in Schweickert (1978, 1980, 1983a) for experiments on the Stroop effect,
sentence verification, and the psychological refractory period, carried out by
various investigators and by Schweickert. The major objection to PERT networks
as models for human information processing is the requirement, said to be
implausible, that a process cannot start before all its immediate predecessors have
finished. Miller (1988) points out that there is. as yet, no compelling evidence rejec-
ting this assumption as a basis for functioning. The assumption is very plausible for
tasks requiring symbol manipulation. For example, in mental arithmetic, it is quite
likely that the process of adding the units column is completed before the process
of adding the 10's column is started.

The additive factor method. Sternberg’s (1969) additive factor method assumes, as
does Donders’ (1868) method, that all the processes are in series. Suppose there are
two experimental factors each of which prolongs a different process in the series.
For example, suppose making the stimulus dimmer prolongs a perceptual process
and increasing the number of alternatives prolongs a decision process. Then the
increase in reaction time produced by prolonging both processes will be the sum of
the effects of prolonging the processes individually.

Sternberg (1969) also said that if the two factors interact, it is likely that they
both affect the same process in the series. Taylor (1976) expanded on this theme.
Here, we argue that if the two factors interact, it may be that the assumption that
all the processes are in series is violated.! We further suggest that it is not merely
the occurrence of an interaction that is important, but whether the interaction is
positive or negative. By a positive interaction, or superadditivity, we mean that the
combined effect of the factors is larger than the sum of their individual effects; a
negative interaction, or subadditivity, is defined analogously. The preceding paper
compares our assumptions with earlier approaches in more completeness.

! Another possibility is that the processes are indeed in series, but a process begins execution before
its successor is finished. This possibility will not be dealt with here. McClelland (1979), Townsend and
Ashby (1983), pp. 401-412), Ashby (1982), and SchweicRert (in press) have made progress on theoreti-
cally analyzing such systems and Miller {1982a, 1982b) and Meyer, Yantis, Osman, and Smith (1985)
have suggested tests of certain versions of these.
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Fii. 1. An Embellished Wheatstone Bridge. Each arc represents @ mental process. The mean
baseline duration of each process is indicated by a number on the corresponding arc.

An example. When not all the processes are in series, interactions between factors
can come and go, depending on seemingly unrelated aspects of the experimental
situation. Suppose two laboratories investigate the effects of two experimental fac-
tors in the same task. The experiments are done in the same way, except that in the
first laboratory trials began without a warning signal, while in the second a warning
signal was used. The hypothetical data from laboratory I. in the upper panel of
Table 1, have a negative interaction and the data from laboratory 2, in the lower
panel, have a positive interaction.

Many, post hoc explanations could be offered for these results. However, a unified
explanation suffices. They were generated with the arrangement of processes in
Fig. 1. The processes have independent exponential distributions, with means as
indicated in the figure. Factor 1 changes the mean duration of process x from 1/20
to 1, factor 2 does the same for process y. The warning signal is assumed to shorten
process ¢, which might be concerned with response preparation. The PERT
network in Fig. 1 is called an Embellished Wheatstone Bridge (EWB). The values
in Table 1, and in the other examples in this paper, were calculated by Donald L.

TABLE 1

Hypothetical Response Time Data
from Two Laboratories

Level of factor 2

Level of
factor 1 i 2
Laboratory One"
1 1.868 2457
3 b2 Ly 3.008
Laboratory Two"
| 1.528 2254
2 1.890 2.689

“ Negative interaction: process ¢ has mean |
* Positive interaction: process ¢ has mean 1,20,

i




INTERACTIONS OF FACTORS 331

Fisher (personal communication, August 1986) using the algorithm of Fisher and
Goldstein (1983). Further development of algorithms is in Fisher, Saisi, and
Goldstein (1985) and Vorberg (1988).

We now proceed to our results on interactions. Ultimately we will show that the
qualitative trichotomy of superadditivity, additivity, and subadditivity is sufficient
to assess much that is of interest about the mental network underlying a task.

TERMINOLOGY

For the reader's convenience, a brief summary of the notation and concepts of
stochastic discrete mental networks is given here. The terms are fully defined in the
preceding paper (Townsend & Schweickert, 1989); see also Schweickert (1978,
1982).

Suppose each process x which must be executed to perform a task is represented
by an arc from starting vertex x' to finishing vertex x” in a directed, acyclic network
with source o and sink r. A process begins execution when and only when all its
adjacent preceding processes are finished. The duration of process x is a non-
negative random variable D(x), with finite mean. A value taken on by D(x) is
denoted d(x). '

Suppose the duration D(x) of each process v has taken on a value d(x). In
other words, suppose each arc has associated with it some nonnegative real
number. For a given assignment of nonnegative real numbers to the arcs, the
duration of a path is the sum of the durations of all the processes on it. We let
d(a, b) denote the duration of the longest path from vertex ¢ to vertex h. Suppose
process y follows process x on a path. The slack [rom process x to process y
is s(xy')=dlo, y')—dlo, x')—d(x)—d(x". y'). The rotal sluck for process x is
s(xr)=dlo, r)—d(o, x')— d(x) — d(x", r). Given values of s(xr), s(yr) and s(xy’),
we let s(yx")=s(yr)— s(xr)+s(xy').

When the durations of the processes are random variables. then so are the path
durations and the slacks. Let the random duration of the longest path from vertex
a to vertex b be denoted D(a, b). The random variables for the slacks S(xr), S(xy’)
S(yr), and S(yx") are defined by substituting in the above' equations the
appropriate values D(a, b) in place of d(a, b} for every pair of vertices {a, b).

Prolonging Processes. Suppose x and y are two processes in a directed, acyclic
network. If there is a path from the finishing vertex of x to the starting vertex of
y, or vice versa, then x and y are sequenrial. Otherwise they are concurrent. Suppose
factor 1 affects process x and factor 2 affects process y. Let D(z) denote the
duration of process = when both factors are at their lowest levels. In particular, the
duration of x is D(x) and that of y is D()) when both factors are at their lowest
levels. Suppose when factor 1 is at level 2, the duration of process x is D(x)+ U,
where U is a nonnegative random variable. Factor 1 is said to increment the
duration of x. The preceding paper (Townsend & Schweickert, 1989) shows that the
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assumption that a factor increments the duration of the process it prolongs is equiv-
alent to the assumption that the factor orders the distributions of the process it
prolongs. Suppose the random variable corresponding lo every process duration
except that of x is unchanged when the level of factor | is changed. Suppose when
factor 2 is at level 2, the duration of process y is D(y)+ V, where D(y) is as
defined before and V is a nonnegative random variable. The effect of factor 2 is to
increment the duration of y. Suppose the random variable corresponding to the
duration of every process except v is unchanged when the level of factor 2 is
changed.

Let the random variable T, be the time to complete the task when factor 1 is at
level i and factor 2 is at level j. A particular value of T, is denoted 1,,. Given a set
of real number values d(or), s(xr), s(yr), u, and v (with s(x)") included if x precedes
), the quantities 1,,, 5, f3,, and 1,, are produced.” We are interested in the expec-
ted value of the expression A =T, — Ty, — T, + T,y E[A]1=E[Ty,]—E[T, ] -
E[T\,]+E[Ty]

When x and y are concurrent, the slacks S(.xr) and S(yr) are linear combinations
of the durations D(or), D(ox’), D(x), D(x"r), D(oy’), D(y), and D(y"r). These
durations and the nonnegative random variables U and V have a joint density,
gld(or), ... d(y"r), u,v). It follows that the slacks S(xr), S(yr), and the random
variables U, ¥, and T,, = D(or) have an induced joint density f(s(xr), s(yr), u, v, t;,).
When x and y are sequential, with, say, x preceding y, there is an analogous density
for the random variables S(xy’), S(xr), S(yr), U, V,and T},.

? One of the reviewers argues that the random variable 4 = Ty, — T}, — Ty, + T, is not well defined,
because the T are defined on different sample spaces. His position is, “I am not saying that the theorem
is incorrect but only that the proof is not watertight.” As we understand his objection, it is that in a typi-
cal reaction time experiment it is not possible to obtain a set of observations {1,,, t3, t3, 122} as defined
here, because on any given trial the subject is observed in exactly one of the experimental conditions,
not all four of them. This objection would have implications about the sample estimator of the popula-
tion value E[ Ty — T3y — T12+ T, ]. Since our theorems concern the population value, the comment, as
we understand it, is not directly relevant to the theorems.

There seem to be two slightly different ways to respond in more detail to this query. (1) Let T3,, T3,
T}:. T3 denote the times to complete the task in the four conditions in the event that all are observed
on the same occasion. Let T denote the time to complete the task in condition (i, j) when the task com-
pletion time for that condition only is observed on an occasion, as in a typical reaction time experiment.
Then the investigator will never know whether E[T]= E[T}]. since the two ways to make the obser-
vations are mutually exclusive. The preceding equation must be assumed in order to apply our results
to a typical reaction time experiment, but we think most investigators will find the assumption
innocuous, even from this viewpoint. (2) From a slightly different perspective, it is really only necessary
to consider A4 as an expression to be integrated, not necessarily a random variable. The regrouping of
terms in the proofs of the theorems is justified by the standard tenets of the integral calculus—once the
condition of Definition 10 from the preceding paper is in place. Furthermore, in every case, an alternate,
sometime more tedious, proof can be carried out even without the regrouping. Thus, assuming Defini-
tion 10 of the first paper, the integrand of E(T,) (i,j=1,2) in the first part of the proof actually refer
to the same (respectively speaking) variables 1,,, u, r, s{xr), and so on. It can then be seen that E(1,,)
will cancel out and that E[Max{[u—s(xr)}~. [v=s{yr)]~}] must be less than E{ [u—s(xr)]~}+
E!{[r—slyr)]* }. thus leading to the negative contrast.
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The major assumptions underlying the theorems on stochastic discrete mental
processes can be stated informally as follows. Processe are arranged in a PERT
network. One experimental factor prolongs a process x in the network, and
another prolongs a process y. Each factor prolongs the process associated with it
by incrementing the duration of the process, leaving the durations of the other
processes unchanged. When the level of a factor is changed, there is no change in
the graph underlying the PERT network. A joint density exists for the random
variables D(or), S(xr), S(yr), U. and V (with S(x)") included if x precedes y).
Certain marginal densities are used in the proofs; these are assumed to exist and to
be well defined (marginal selectivity; see preceding paper).

Otherwise, there are no assumptions about the form of the distributions, or
about the independence of the random variables. In particular, even if each subject
has a different joint distribution for the random variables, the theorems would
apply to the expected values of the reaction times, where the expectation is with
respect to the mixture distribution produced by all the subjects.

THE QUALITATIVE TRICHOTOMY AND ITS IMPLICATIONS

We begin with networks in which processes x and y are concurrent, and then
discuss the more complicated case where they are sequential.

Concurrent Processes

An example of a network in which x and ) are concurrent is in Fig. 2. Examples
of the behavior of factors prolonging x and y are in Tables 2 and 3. In these exam-
ples, it is assumed that the process duration have exponential distributions and are
pairwise independent. The mean duration for each process (the reciprocal of the
rate) is given in the figure. Evidence that some mental processes have exponential
distributions is given in Ashby (1982), Ashby and Townsend (1980), Kohfeld
(1969), and Kohfeld, Santee, and Wallace (1981a, 1981b). Ratcliff (1988) argues
that nonexponential processes may sometimes statistically approximate certain
predictions by exponential processes.

In the first example, in Table 2, the factor prolonging x is assumed to do so by
decreasing the rate parameter of x from 20 to 1. Likewise, the factor prolonging y

1

21

(=]

/
1
> = |

FIG. 2. When x and y are concurrent, factors selectively prolonging them will interact. The number
on each arc is the mean of the exponential distribution assumed for the baseline in the calculations
reported in the text.
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TABLE 2

Effects of Factors Sclectively Prolonging
Concurrent Processes v and » in Fig. 2 by Decreasing
Their Rate Parameters {rom 20 to |.

The Number in Each Cell is the Mcan Reponse Time
in Arbitrary Unils.

Level of factor 2

Level of

factor | 1 2
| 2139 3.054
b 3.054 1.551

is assumed to decrease its rate parameter for y from 20 to 1. The resulting reaction
times lead to a negative interaction of — .418.

In the second example, in Table 3. the factor prolonging x is assumed to insert
an additional independent exponentially distributed process in series with the
original process x, so the new process x has a generalized gamma distribution
(McGill & Gibbon, 1965). The inserted process has a rate parameter of 1. Likewise,
the factor prolonging y is assumed to insert a new independent exponentially
distributed process in series with v, The rate parameter of the new process is 1. The
resulting reaction times lead to a negative interaction of —.463.

Townsend and Ashby (1983; see also Townsend, 1984) proved that a large
number of parallel models cannot predict additivity and that the class of indepen-
dent parallel models must predict subadditivity. The following theorem generalizes
the subadditivity classification to an even larger set of models, where independence
is not required. It states that if processes x and y are concurrent and a restricted
range of values for the prolongations is not used, then the interaction, as given by
E[A], is negative.

The proof is a variation on that in Townsend and Schweickert (1985). It is given
in some detail; later proofs will be briefer. Let R = { {s(xr), s(yr), u,v) } be the set

' TABLE 3

Effects of Factors Selectively Prolonging
Concurrent Processes x and y as in Fig. 2 by
Concatenating a Process with Mean |
in Series with Each of Them

" Level of factor 2

Level of

factor | 1 2
1 2139 3102
2 3102 3,602
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of values taken by the random vector <{S(xr), S(yr), U. V). Let Ryc R be the
region where the prolongations are larger than the slacks, that is

Ry = {{stxr), s(yr) ue) | u>sixr)and v>s(yr) ).

For a real number r, let

. f=0 if rg0
tr ]{=r it r>0.

THEOREM | (Townsend & Schweickert, 1985). [If processes x and y are
concurrent, then E[ A]1<0. If the probability that (s(xr), s(yr), u, v) takes on values
in Ry is positive, then E[A] <0.

Proof. In Schweickert (1978) it is shown that for given values
{s(xr), s(yr), u, v), if x and y are concurrent,

fyy =1, + [u—s{xr]’
=1+ [t ~.s‘{lrr]}"
tyy=ty +max{[u—stxr]*. [v=s(pr)]*}
Then
a=ly—Ilp—In+tiy

=max{[u—s(xr)]*, [t - stvr)]*t = [u—=s(xr))* = [e—s(y)]".

Clearly, a=0 when and only when « < s(xr) or ¢ <s(yr). Otherwise a <O0.

Let the joint density of s(xr), s(yr), u, v, t,, be f(s(xr), s(yr), u,v.t,,). Let the
joint density of s(xr), s(yr), u. v be fiass(s(xr), s(yr), u, v); let the joint density
of s(xr),u,t,, be fisls(xr).u 1,,); let the joint density of s(yr),v ¢, be
Saus(s(yr), v, t,,); and let the density of 7, be fs(1,,). Then

E[A}=E[T22]—[E[th]—E[T1:]+E[T||]
[T et max{fu=sten] . fo-ston* )
o Yo Yo Yo ‘o

x f(s(xr), s(yr), w, v, 1)) ds(xr) ds(yr) du dv di,

_Jd jx JJ' (11, + [u—s(xr)]) fias(s(xr), u, t,) ds(xr) du dt,

0 (1] 0

5 ,rc J‘: J: (ty 4 Lo —s(yr)]7%) faas(s(yr ), v, 8)d(yr) de iy,
1]

+J t S5t ) dey
0
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i _[: L‘ _[IL _[: J‘o, (1, +max{[u—s(xr)]*, [v—s(yr)]*}

wiy =83
—ty=[o=s(yr)]* + 1) S (s(xr), s(yr), u, 0, ty)
x ds(xr) ds(vr) du dv dt,,

- }T J’u’ L“‘ J‘: (max{[u—s(xr)]', [v=—s(yr)]"}

—[u—=s(xr)]* —[o—s(yr)]"* ) fi2aalstor), sCyr), u, v)

x ds(xr) ds(yr) du dv

o J]]T 0f\234(s(xy), s(pr), u, v) ds(xr) ds(yr) du dv

R~ Ry
+ ||| (max{u —s(xr), v —s(yr)} — (u—s(xr)) = (v —s(yr))
I
X fra34(s(xr), s(yr), u, v) ds(xr) ds( yr) du dv.
The result follows immediately. ' QE.D.

Sequential processes

The story would be simpler if factors prolonging sequential processes always had
nonnegative interactions, but they do not. If the network is a Bare Wheatstone
Bridge (BWB), as in Fig. 3, the interactions between factors prolonging x and y can
be negative. If the baseline durations of x and y are large, the interaction will
approach additivity, but it can never be positive.

Two graphs are said to be homeomorphic if one can be transformed to the other
by repeated application of the following two procedures: (a) an arc is replaced by
two adjacent arcs in series and (b) two adjacent arcs in series are replaced by a
single arc. Negative interactions for factors prolonging sequential processes can
only occur if the task network has a subnetwork homeomorphic to the Bare
Wheatstone Bridge (Schweickert, 1978).

The Bare Wheatstone Bridge is important for another reason. A directed acyclic
graph (DAG) is series—parallel if it can be constructed recursively as follows. (1) A
single directed arc between two vertices is a series—parallel DAG. (2) (Serial com-
position) If a directed arc is inserted as an adjacent predecessor to the starting
vertex of a series—parallel DAG, or inserted as an adjacent successor to the ter-
minating vertex of a series—parallel DAG, the resulting DAG is series—parallel.
(3) (Parallel composition) If a directed arc is inserted with its starting vertex at the
starting vertex of a DAG and with its terminal vertex at the terminal vertex of a
DAG, the resulting DAG is series—parallel.
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TABLE 4
Effects of Factors Selectively Prolonging v and v
in a Bare Wheatstone Bridge as in Fig. } by
Decreasing Their Rate from Parameters 20 to |

Level of factor 2

Level of

factor | I |
| La52 2267
2 2267 2489

An important result is that a directed acyclic graph is series-parallel if and only
if it does not contain a subgraph homcomorphic to the Bare Wheatstone Bridge
(Dodin, 1985; Kaerkes & Mohring, 1978: Valdes, Tarjan, & Lawler 1979).

Tables 4 and 5 show the results of prolonging processes in the Bare Wheatstone
Bridge illustrated in Fig. 3. The number on cach arc gives the mean duration of
each process. The processes are assumed to have pairwise independent exponential
distributions.

In Table 4, each of processes x and y is prolonged by having its rate parameter
changed from 20 to I. The interaction is —.093. In Table 5, process .x is prolonged
by having an independent exponentially distributed process inserted in series with
x. The new process has rate parameter |, and is independent of every other process
in the network. Process y is prolonged in the same way. (The processes inserted to
prolong x and y are independent of each other as well.) The interaction is —.102.

The next theorem shows that the interaction will tend to be negative if the
network is a Bare Wheatstone Bridge with x and y as in Fig. 3.

Let the joint density of {S(xy’'), S(xr),S(yr). U, V) be f(s(xy'),s(xr),s(yr), u,v).
Let R= {{s(xy"), s(xr), s(yr), u, v >} be the space of values taken on by the random
vector (s(xy’), s(xr), s(yr), u, v). The space R can be divided into 18 regions as in
Table 6, from Schweickert (1978, 1982).

For the Bare Wheatstone bridge, regardless of the distributions of the process

TABLE §

Efects of Factors Selectively Prolonging v and »
Arranged in a Bare Wheatstone Bridge as in Fig. 3 by
Concatenating a Process with Mean |
in Series with Each of Them.

Level of factor 2

Level of

factor | | 2
1 1.552 ' 2304
2 2.304 2954
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Fii. 3. Processes v and v are on opposite sides of a Wheatstone Bridge. For the calculations
reported in the texi, cach process is assumed to have an exponential distribution whose mean is given
by the number associated with cach arc.

durations, the only regions possible are R, through R,, since s(xr)—s(xy)<0
(Schweickert, 1978, 1982). If the prolongations are big enough to have an effect,
a<0.

THEOREM 2. Suppose the task network is a Bare Wheatstone Bridge with x and
¥ on opposite sides of the bridge, as in Fig. 3. Then E[A] <O0. If the pertinent random
variables S(xy'), S(xr), S(yr), U, V take on values in regions Rs, Rg, Ry, Ry with
nonzero probability, then E(A) <0.

Proof. We have
E[A]= Iﬂﬂaf{s(r_&"), s(xr), s(yr), u, v)
R
x ds(xy’) ds(xr) ds( yr) du dv

= Hm Of (s(xy’), s(xr), s(yr), u, v)
RiuwRyuRyw Ryu Ry

x ds(xy') ds(xr) ds( yr) du dv

£ HD]' af (s(xy’). s(xr), s(yr), u, v)

Rsw Rgw Ryw Ry

x ds(xy') ds(xr) ds(yr) du dv

<0

since a <0 in regions Rs, R, Rg, and Ry. The second part of the theorem follows
immediately. Q.ED.

We now consider the case in which x precedes y, but no subnetwork of the task
network is homeomorphic to a Wheatstone Bridge with x and y on opposite sides
of the bridge. In that case, the only regions of R possible are R10 through R18
(Schweickert, 1978, 1982). The following theorem states that in that case, the inter-
actions are nonnegative.
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In Townsend and Schweickert (1985) it was shown that in the special case of the
network consisting of x and y in series with an arc = concurrent with both x and
¥, E[A]>0. The following theorem considers the general case.

THEOREM 3. Suppose process x precedes process v, and there is no subnetwork of
the task network homeomorphic 10 a Wheatstone bridge with x and y on opposite

sides of the bridge. Then E[A]> 0. If every region of R possible under the hypotheses
has a nonzero probability* then E[A] > 0. :

Proof. We have

Eld]= J]ﬂjaf{s{xy’ ) s(xr), s(yr), u, v)
R

x ds(xy') ds(xr) ds( vr) du dv f

B

Ruv Risw Rppw R
x ds(xy') ds(xr) ds( yr) du dv
=0

af (s(xy'), s(xr), s(yr), u, v)

since a >0 in regions R,,, R,s, R,7, and R 4. The second part follows immediately,
Q.E.D.

CorOLLARY. If E[A] <O, then either x and y are concurrent or there is a sub-
network of the task network homeomorphic to a Wheatstone bridge with x and y on
opposite sides of the bridge.

Proof. The conclusion follows immediately.

The following two theorems provide information about the conditions under
which additivity and superadditivity arise.

THEOREM 4. If E[A] >0, then there is a path from o to r not containing x or y.

Proof. Since E[A]>0, x and y are sequential. Without loss of generality,
assume x precedes y. Assume, contrary to the conclusion, that every path from o
to r contains x. Then for every set of values taken on by the path durations,
s(xr)=0. Then s(xr)—s(xy') <0, so E[4] <0 contrary to the hypothesis. Hence,
there is a path from o to r not containing x. Likewise, there is a path from o to r
not containing y.

Suppose every path from o to r not containing x contains y, and every path from
o to r not containing y contains x. Then either x or y is on the critical path, so

' From Table 6, it is apparent that a slightly stronger result holds. If the random variables S(xy’),
S(xr), S(yr), U,V take on values in Ry, Ry, or R,, with nonzero probability, or if
[v—s{yr) +u—s{xy)]* >0 with nonzero probability (in region R,,), then E[A]>0.
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Wxr)=0 or s(yr)=0. In cither case, s(xr)—s(x)') <0 so E[4] <0 contrary to the
hypothesis. Hence there cxists a path from o to r not containing x or y. QEL.

The following terminology is needed for the next theorem. When the levels of the
factors prolonging processes x and v are chosen, there is a corresponding density
f(stxr’), s(xr), s(yr). w, v). I for all such choices E[4] = 0. we write E[A]=0. The
duration of a particular process = may be so small that it is never on a critical path.
The criticality index of a process = is the probability that = is on a critical path in
a sample of process durations. A process never on a critical path has criticality
index 0.

THEOREM 5. Suppose there is no upper bound on the value the duration of a pro-
cess can have. Suppose all possible regions in R have nonzero probability of occurring.
If ELA] =0, then there is no arc = concurrent with both x and v and having a positive
criticality index.

Proof. Since E[A] is 0, by Theorem | x and y are sequential. Without loss of
generality, assume v precedes . Since for a given set of process durations

s(xy ) =dloy’) = dlox") — d(x) = d(x"y")

and there is no upper bound on the duration of x, there exist values of d(x) large
enough to make s(x3”) =0. Suppose s(x1')=0.

Suppose there exists an arc = concurrent with v and y. with positive criticality
index. The total slack for = is s(zr) = d(or) — d(0z') — d(z) — d(="r). Since = has non-
zero criticality index, there exist values of (=) large enough to make s(zr) =0. Since
- is on none of the three paths in the equation for s(xy”), the duration of s(xy’) is
not affected by the value of d(z). Suppose = is critical while s(xy’)=0.

Process x cannot be on a critical path with =, since x does not precede or
follow =. If there is only one critical path, x is not on it, so s(xr) > 0. Suppose there
are more than one critical path, and  is on one of them. This path does not con-
tain -, and since there is no upper bound on the duration of z, a slightly larger
value for d(z) will make this path noncritical. Then s(xr) > 0.

Since s(xr)>0, while s(x1')=0. region R is a possible region, and has some
nonzero probability of occurring. If E[4]=0. the contributions from the regions
R., R,, Ry. and R,, where the interaction is negative, must exactly equal the
contributions from the regions R,s, Rs, R5, and R,g, where the interaction is
positive. Clearly this will not happen for all choices of the joint density f(s(xy),
s(sr), s(yr), u, v), hence it is not the case that E[A]=0. Then no process z exists
as described. Q.ED.

APPLICATION OF THEOREMS TO THE EMBELLISHED WHEATSTONE BRIDGE

To use these results to analyze a task, the investigator would use experimental
factors to prolong processes individually and in pairs. The interactions would be
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classified as positive, negative, or zero, and various classes of networks would be
sclected for further consideration, or eliminated. If it is known for every pair of
processes whether the pair is sequential or concurrent, then the set of all possible
digraphs can be constructed by using the transitive orientation algorithm; see
Golumbic (1980) or Schweickert (1983b) for details.

An investigator would not ordinarily have information about all pairs of pro-
cesses, but might, by some combination of empirical knowledge, common sense,
and previous. analysis of reaction times, be able to restrict his attention to a set of
candidate networks. To illustrate the use of the theorems in this paper, we suppose
the investigator has decided by some means that the relevant network is an
Embellished Wheatstone Bridge or a subnetwork of it, and consider how the results
of prolonging two processes, x and yv. further restrict the possibilities.

The Embellished Wheatstone Bridge (EWB), see Fig. I, provides a prototype of
sorts for all three types of qualitative mean reaction time behavior, additivity,
superadditivity, and subadditivity. It can do this because it contains the four
fundamental classes of paths: (1) paths containing both x and y: (2) paths contain-
ing x and not y; (3) paths containing y and not x; (4) paths containing neither x
nor y. Depending on which paths are dominant, in terms of tendencies toward long
processing times, the EWB can act like (a) the Bare Wheatstone Bridge (BWB) in
Fig. 3; (b) a network in which x and y are concurrent; (c) a network in which x and
v lie on a path but are concurrent with an additional path, and paths of type (2)
and (3) are absent; (d) a network in which x and y are in series.

It is relatively obvious from the preceding sections that (a) and (b) produce sub-
additivity, (c) produces superadditivity, and (d) produces additivity. Slightly more
subtle is the other direction: What may we conclude from super-, sub-, or additivity
discovered in our data, when we are willing to confine ourselves to the EWB, or
subnetworks of an EWB? It turns out that quite strong conclusions may be drawn
within this class of systems.

I. If additivity is found for all levels of u and v, then by Theorems 1, 2, and
5 the bridge in the EWB is present (b in Figure 1), the path containing neither x
nor y is absent (e) in Figure 1), and it is not the case that both ¢ and a are present
(on the paths containing, respectively, x but not y and » but not x). Fig. 4 shows
three mental networks satisfying these conditions.

II. If superadditivity is found, then by Theorems | and 4, (a) x and ) are con-
nected on some path (ie., the bridge, b, is present) and (b) the path that contains
neither x nor y is present (e). The other paths, a and ¢, may or may not be present.
A BWB is ruled out because it is incapable of producing superadditivity. Figure 5
indicates the appearance of such networks. Observe that the EWB can (but need
not) produce such behavior and the simplest network evidencing this type of
behavior is simply serial in x, y with a concurrent path e

II1. If subadditivity is found, then by Theorems | and 2 and EWB could (but
need not) be responsible. The behavior of the network is dominated by either the
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Fi. 4. If the task network is known to be a subnetwork of the Embellished Wheatstone Bridge, and
additivity is found for all levels of the factors prolonging v and ). then the network is one of the three

illustrated here.

BWB or a subnetwork of he EWB in which v and y are concurrent. Two
possibilities for the latter are shown in Fig. 6b and 6c. Continued prolongation of
¥ and v will lead to asymptotic additivity in case of an EWB or BWB but Sub_a\d-
dilivitf persists always if a network in which v and y are concurrent is responsible
for the original subadditivity.

Thus, additivity suggests a network in which the \_'a_rious subprocesses can be
segregated into two subnetworks of activity, one containing x a1:1d th_e other y, tha:
are connected through a single vertex. The subnetwork can be identified as an “x
subnetwork because its overall processing duration is selectively affected by the
experimental factor. The same can be said with regard to ¥ in : the second
subnetwork, so overall we see a sort of serial macro-system involving separate
subsystems for x and y. : £

The full EWB can, as we might expect, produce either super- or subadditivity but
not additivity except by a balancing act. The BWB can only produce gfb_::dditivity.
Networks in which x and y are concurrent can only produce subadditivity. Super-
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. FiG. 5. Networks producing superadditivity,
additivity implies the presence of process e, as in the special case where x and y are
serial in concurrence with e. Finally, any network in which there exists a path
connecting x and y (i.e, b) can aporoach additivity asymptotically if the baseline
durations of x and y, D(x) and D(y), are relatively long.

Incidentally, it is interesting that one of the present class of mental networks
cannot, as x and y (alone) are manipulated, act subadditively for a while and then
alter to acting superadditively or vice versa. For instance, when certain of the above
subadditive networks approach additivity asymptotically, they do not go through
an intermediate phase of superadditivity. This is one indication that our method is
based on a falsifiable theory, albeit a quite general one. Strong empirical evidence
that such alternating super- and subadditive phases occurred throughout the
reasonable range of x and y manipulations would falsify the entire class of PERT
networks. :

Finally, it is possible to gain more identification of a network by manipulating
other path durations. For example, in the event of superadditivity associated with
EWB, one can learn if a and c are present because if they are prolonged, the
network will be pushed into subadditivity. Similar remarks hold in the case of sub-
additivity. Ultimately, then, there is hope of almost complete identification of the
underlying mental network employing factorial reaction time experiments within
our methodology and within the general class of EWB's. The only real exception is
in certain cases such as x, y in series where their order would not be determined
by our method. However, in many such cases. common sense may dictate the order
(also see Schweickert, 1983b).

i}

'
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(a)

(c)

Fig. 6. Networks producing subadditivity.

Epilogue. This paper presents (wo types of theorems. Constructing nelw‘orks
from data requires theorems of the form: If property P holds for the interactions,
then property Q holds for the network. A complete set of such theorems would dif:-
tate the set of all networks possible for a given set of data. The set of theorems in
this paper is, in this sense, incomplete. Some of the theorems presented are of the
form: If property Q holds for the network, then property P holds for the interac-
tions. These shed some light on the set of networks possible for a given set of data,
but may be of greater use as steps toward further theorems of the first type. In any
case, the applications to EWB’s may be considered complete within that realm.
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